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Adaptive Tracking Games for Coupled Stochastic
Linear Multi-Agent Systems: Stability,

Optimality and Robustness
Qiang Zhang and Ji-Feng Zhang, Senior Member, IEEE

Abstract—Distributed adaptive tracking-type games are inves-
tigated for a class of coupled stochastic linear multi-agent systems
with uncertainties of unknown structure parameters, external sto-
chastic disturbances, unmodeled dynamics, and unknown agents’
interactions. The control goal is to make the states of all the agents
converge to a desired function of the population state average
(PSA). Due to the fact that only local information is available
for each agent, the control is distributed. For the time-invariant
parameter case, the extended least-squares algorithm, Nash cer-
tainty equivalence (NCE) principle, and certainty equivalence
(CE) principle are used to estimate the unknown parameters and
the PSA term, and to design adaptive control, respectively. Under
some mild conditions, it is shown that the closed-loop system is
almost surely uniformly stable with respect to the population
number ; the estimate for the PSA term is strongly consistent;
the adaptive control is almost surely an asymptotic Nash equilib-
rium. When the dynamics of each agent contains time-varying
parameters and unmodeled dynamics, the projected least mean
square (LMS) algorithm, NCE principle, and CE principle are
adopted to estimate the unknown time-varying parameters, and
the unknown PSA term, and to design robust adaptive control,
respectively. In addition to stability of the closed-loop system and
consistency of the PSA estimate, the control law is shown to be
robust Nash equilibrium with respect to the unmodeled dynamics,
the variation of the unknown parameters, and the external dis-
turbances. Two numerical examples are given to illustrate the
methods and results of this paper.

Index Terms—Adaptive control, distributed control, multi-agent
systems, Nash equilibrium, robust adaptive control, stochastic dy-
namic game.

I. INTRODUCTION

A. Motivation

D URING the last half century, adaptive control theory
has attracted lots of attentions and successfully been

used to many applications [3]–[6]. Adaptive schemes are of
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significance due to their effectiveness in dealing with various
uncertainties, for instance, unknown structure parameters,
external disturbances, unmodeled dynamics etc. When carrying
out tasks such as cooperative control, distributed control,
distributed estimation etc., a multi-agent system (MAS) is very
susceptible to these uncertainties. Thus, it is also of great im-
portance to study the adaptive control design for general MASs,
and make them possess adaption capability to uncertainties.
Compared with the conventional case, the prominent charac-

teristic of adaptive control of MASs is distributed rather than
centralized. This is similar to the decentralized adaptive control
of large-scale interconnected systems, on which many research
results can be found, including adaptive stabilization, regulation
and tracking control [7]–[14]. The key feature is that the com-
munication information among the subsystems is not fully used
to improve the control performance. In [7]–[11], stability condi-
tions on system structure were investigated for various systems
with different kind of disturbances and interconnections among
subsystems, and decentralized adaptive stabilization controls
were designed. In [12], [13], for the case where the global infor-
mation, such as the target state/output of all the subsystems, is
known, strictly decentralized asymptotic adaptive tracking con-
trols were given for a class of large-scale interconnected sys-
tems. In [14], the issue on how to use the communication infor-
mation among subsystems to enhance control performances was
considered, and decentralized adaptive control was designed for
a class of quite general large-scale systems with communication
information among subsystems available.
Different from large-scale system, for MASs, on one hand,

each agent has its own control goal, and certain capability of
information collecting, processing, and communicating. When
designing control, in addition to their own measurement infor-
mation (control, state, output, etc.), their neighbors’ informa-
tion can be used. On the other hand, each agent has only lim-
ited capability on information collecting, processing, and com-
municating, and cannot get the global information of the whole
system. Thus, their controllers have to be based on only the local
information, and thus, are distributed. This brings us a basic
problem, i.e., how to use only the local information to construc-
tively design such a distributed controller that has the capability
of both dealing with uncertainties (e.g., unknown parameters,
unmodeled dynamics, external disturbances) and driving the
whole MAS to a desired global optimal performance [15]–[27].
One research topic along this line is the consensus problem of
MAS where connectivity properties are important for the infor-
mation flow of the system [15]–[17]. For example, [28] uses a
variable structure approach to solve both the distributed con-
sensus tracking and swarm tracking problems under connec-
tivity conditions. There are also other works to establish the
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global behavior without explicitly resorting to a priori con-
nectivity conditions, by using other information or constraints
[18], [19], [24]–[27]. Under the noncooperative individual-mass
game framework, [24]–[27] considered the optimal LQG and
tracking games for a class of large population stochastic multi-
agent systems (LPSMASs), where the particular coupling struc-
ture of the individual dynamics and costs, the overall rationality
hypotheses for the population, and the large population number
are the key issues in the problem setup. In all these works, the
system parameters are required to be known and deterministic,
and the dynamic model of each agent does not contain any un-
modeled dynamics.
Adaptive control of MASs, which can simultaneously cope

with uncertainties such as unknown parameters, unmodeled
dynamics, external disturbances, etc., and which make the
whole system achieve a desired global control goal, has not
been given sufficient attention. Only recently are some results
on this topic gradually coming up [29]–[34]. Taking the LQG
game of a simple first-order continuous-time LPSMAS as
an example, [29] gave some intuitive suggestions on how to
conduct parameter estimation and adaptive control design, and
how to improve the transient estimation while avoid incurring
over-energied control. This can be regarded as a preliminary
work on adaptive control of LPSMASs, although lacking of
concrete result and rigorous analysis. Reference [30] presented
a comprehensive survey on the Nash certainty equivalence
(NCE) based control of LPSMASs, including the adaptive
LQG control of high-dimensional linear LPSMASs. This can
actually be seen as a complement to the results in [29]. One
basic characteristic of the above results on LPSMASs is that the
population number is taken as a variable, and the asymptotic
macro-properties of the whole system as the agent number
increases to infinity are concerned. When the agent number is
fixed, some nice results on the adaptive control of MASs can be
found in [31]–[34]. Reference [31] considered the distributed
adaptive tracking control for a class of coupled ARMAX
MASs, and the signal to be tracked and some parameters (e.g.,
the high-frequency gain) of each agent are required to be known
and deterministic. Reference [32] considered the robust adap-
tive consensus problem ofMASs. They used the adaptive neural
network scheme to approximate the uncertain dynamics, and
a robustness signal to compensate for the approximation error
and bounded external disturbances. Reference [33] considered
the adaptive formation control problem by transforming it into
nonlinear servomechanism problem, and designed an adaptive
internal model based controller. Reference [34] considered the
formation control and target tracking problems in a class of
multi-agent systems with nonlinear and uncertain dynamics,
and use a direct adaptive fuzzy control methodology to design
control. However, both of the above three works did not pro-
vide rigorous theoretical analysis for the performance of the
closed-loop system. In summary, when the dynamic model of
each agent contains unknown structural parameters, unmodeled
dynamics and external disturbances, and the performance index
contains unknown coupled signal, the distributed adaptive
control for general MASs is of great significance from the point
view of both theory and practice, and worth thoroughly and
deeply investigating.

B. Main Contributions

Different from the conventional case [3]–[6], the adaptive
control design for MASs needs to consider the interactions

among agents, coupling terms in dynamics and performance
indices, and the capability on information collection of each
agent and so on. However, similar to the single-agent system
case, the framework of the adaptive control of MASs should
also include a parameter estimator to estimate the unknown
parameters online and a distributed control law to achieve the
given control tasks. Adaptive control can provide better capa-
bility in dealing with uncertainties, but may simultaneously
introduce multiplicative nonlinearities into the closed-loop
systems. This together with the interactions among agents
makes the performance analysis of the closed-loop adaptive
MASs much more difficult.
This paper is about to consider the adaptive optimal tracking

task for a class of coupled stochastic linear MASs under the
noncooperative individual-mass game framework [24]–[27],
[29], [30]. For the case where the system uncertainties contain
unknown constant parameters, stochastic disturbances and
unknown coupled interactions, we will design a distributed
adaptive policy to drive the agent system to a desired mass
behavior via the individual-mass interactions, and prove the
stability of the closed-loop system and the optimality of the
designed control. If in addition, the uncertainties include un-
modeled dynamics and slowly time-varying parameters, we
design robust adaptive tracking control, and prove the stability
of the closed-loop system and the robust optimality of the
control. The interaction among agents lies in the following
two aspects. One is the coupled term with its neighbors in
the dynamics of each agent, including modeled part and un-
modeled part; and the other is the unknown PSA term in the
performance indices. The optimality of the performance indices
is described by concepts of asymptotic Nash equilibrium [25],
[27] and robust Nash equilibrium, respectively. Compared with
the previous index-coupled individual-mass interplay system
[24]–[27], [29], [30], in this paper we extend the results to
weakly coupled systems with unknown parameters. Specifi-
cally, the main contributions of this paper can be summarized
as follows.
1) The distributed adaptive tracking-type games and dis-
tributed robust adaptive tracking games are respectively
obtained for stochastic linear MASs.

2) For the adaptive tracking games of stochastic linear
time-invariant MASs, NCE principle and extended
least-squares (ELS) algorithm are used to estimate
the PSA term and the unknown constant parameters,
respectively. A distributed adaptive tracking control
is designed, under which the closed-loop system is
almost surely uniformly stable with respect to (w.r.t.)
the population number ; the estimate of PSA is
strongly consistent; the adaptive control designed is
almost surely asymptotic Nash equilibrium, and the
performance indices converge to the optimal values
with some convergence rate.

3) For the robust adaptive tracking games of stochastic
linear MASs with unknown time-varying parameters,
the NCE principle, projected least mean square (LMS)
algorithm and CE principle are used to estimate the PSA
term, the unknown time-varying parameters, and design
the adaptive control. It is shown that the closed-loop
system is stable, the estimate for the PSA term is con-
sistent, and the adaptive control are robust Nash equi-
librium w.r.t. the unmodeled dynamics, the parameter
variation and the external disturbances.
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C. Organization of the Paper and Notations

The remainder of this paper is organized as follows. In
Section II, we present the model and formulate the problem
to be investigated. In Section III, we discuss the adaptive
tracking games of MASs with unknown constant parameters.
In Section IV, we consider a more general case with unmodeled
dynamics and unknown time-varying parameters. In Section V,
we use two numerical examples to illustrate the methods and
results. In Section VI, we give some concluding remarks and
further research topics.
The following notations will be used throughout this paper.
denotes the real -dimensional space. For a given vector

or matrix , denotes its transpose, denotes its trace
when is square, denotes the Euclid norm of vector ,
or the -norm of matrix . For a given random variable ,
denotes the expectation of , denotes the conditional
expectation of w.r.t. the -algebra . For a given sequence
of nondecreasing -algebra , and a sequence of
random variables , we call an adapted
sequence, if for any , is -measurable.

II. PROBLEM STATEMENT

Within this and the next section we will consider the dis-
tributed optimal tracking-type games of agents, subjected to
uncertainties of unknown constant parameters, stochastic dis-
turbances and unknown coupled terms. The dynamics of agent
( ) is described by the following coupled ARMAX
model:

(1)

where , and denote
the state, control input and stochastic disturbance of agent
at time , , , for ;

, , ,
are unknown parameter matrices with proper

dimensions; denotes neighbors of agent
; denotes the interaction term
of agent with its neighbors, the coupling coefficients
( ) describe the influence intensity of agent to
agent .
Here, we assume the network topology of the MAS is time

invariant, i.e., do not change with time. Moreover,
we assume that the th agent can measure the states of itself and
its neighbors exactly.
For the above coupled stochastic MASs, we investigate the

problem of distributed optimal tracking games via coupled per-
formance indices or costs, which are described by

(2)

where ;
is a Borel measurable function;
denotes the population state average (PSA) at time .
System model (1) is the ARMAX model often used in the

adaptive control field of single-agent system [3]–[6], the linear
interaction model with its neighbors is common in the decen-
tralized adaptive control of large-scale interconnected systems
[12]–[14]. The model (1) with cost (2) has a wide background
in biological, economic and engineering systems, for example,
the particle swarm systems of [35], [36] and the resource allo-
cation problem in wireless network [37]. In the particle swarm
systems, the acceleration of agent is a linear dynamic equa-
tion of its own position , velocity , Gaussian white noise
, and the coupled interacting term . In the re-

source allocation problem, each user, with the linear power ad-
justment dynamics, makes its own strategy ensure an ade-
quate signal-to-interference ratio (SIR) ,
where is the power level of user , is the constant system
background noise intensity. Other motivating examples such as
the production output adjustment problem in dynamical eco-
nomic market can be found in [24] and the numerical example
in Section V. In these examples, the mathematical expression
of the PSA index coupling is determined by and varies with the
specific group behavioral objectives of the whole agent system.
For example, in the power allocation problem, the Borel mea-
surable function , where is the target level
of SIR. In the production output adjustment problem, is
approximately proportional to the current product price, which
can be modeled as a nonlinear function of the overall produc-
tion level [38].
Remark 1: Different from the system model used in the

decentralized adaptive control of large-scale interconnected
systems, here we consider the individual-mass interacting
stochastic performance indexes (2). Compared with the ex-
isting work [31], the problem discussed here has the following
essential differences. First, in the performance index
is unknown, and depends on the states of all the other agents.
Second, the high-frequency gains ( ) are
unknown, and need to be estimated.
For convenience of comparison, just as in [25], [27], we de-

fine the global-measurement-based admissible control set for
agent by

and local-measurement-based admissible control set by

In order to quantitatively analyze the minimization of the
stochastic performance indices , , we in-
troduce the definition of almost surely (a.s.) asymptotic Nash
equilibrium.
Definition 2.1 [27]: For the system (1)–(2), a group of

control sequences
is called a.s. asymptotic Nash equilibrium w.r.t. the corre-
sponding index group ,
if there exists a sequence of non-negative random vari-
ables (r.v.s) on a probability space

, such that a.s., and
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a.s., , for suffi-
ciently large .
In the above definition, denotes the admissible control set

of agent . Obviously, in distributed control situation, we have
, while in centralized control situation, .

The purpose of this paper is to design a distributed adaptive
tracking control, using states of itself and its neighbors for the
system (1) with performance index (2), i.e., to find an adap-
tive control group in to cope with the uncertainties, and
analyze stability of the closed-loop system, and a.s. asymptotic
Nash equilibrium of the designed control group w.r.t. the corre-
sponding performance index group.

III. ADAPTIVE TRACKING CONTROL DESIGN
AND PERFORMANCE ANALYSIS

In this section, we will design a distributed adaptive control
for theMASs described by (1) and (2). To be specific, the param-
eter estimation algorithm is presented in Section III-A; the de-
veloped adaptive control is discussed in Section III-B; and prop-
erties of the closed-loop systems are analyzed in Section III-C.

A. Estimation Algorithm

To proceed the design of adaptive tracking control and ensure
good performance of the closed-loop system, we need the fol-
lowing assumptions on the system (1).
A1): is a group of independent mar-

tingale deference sequences on a probability space ,
satisfying the following conditions:

a.s. (3)

a.s. (4)

where , is a positive
definite matrix.
A2): , , where

.
A3): , where

.
A4): is an independent stochastic sequence

with a common mathematical expectation , and is
independent of .
Remark 2: Assumptions A1)–A3) are standard in adaptive

control theory [4], [39]. Let the global -algebra at time
( ) be given by , where

. Then it is easy to verify that
satisfies A1), i.e.,

is a martingale difference sequence, satisfying

(4) and a.s. Therefore, if

is an adapted sequence, then the linear minimum
variance estimation for generated by (1) coincides
with the minimum variance estimation . A2) is
the usual strictly positive condition. A3) is the minimum phase
condition, which is necessary for adaptive tracking controls.
A4) is a condition on initial states.
More generally, one can consider the case where the expec-

tations of initial states are different for each agent, but
some statistical assumptions on (for example, having a

known distribution function with some properties) may be re-
quired as in [24]. The following lemma is key to the analysis of
the ELS algorithm and the proofs of the theorems in this paper.
Lemma 3.1 [4]: Let be a matrix martingale

difference sequence, an adapted random matrix
sequence, satisfying a.s., . If for some
constant , a.s., then

a.s.,

, where .
For convenience of expression, we rewrite (1) in the fol-

lowing form:

where

(5)

(6)

We apply the ELS algorithm to estimate the unknown param-
eter matrix :

(7)

(8)

(9)

(10)

(11)

where is the estimate of . Initial values , ,
can be arbitrarily taken.

Remark 3: In the design and analysis of decentralized adap-
tive control of large-scale systems, Lyapunov based method is
commonly used, where the parameters are adjusted so that the
tracking errors converge to zero. But here, for each agent we
use an online (recursive) parameter estimator to estimate the
unknown parameters, and design the adaptive control based on
their fine estimations, i.e., the adaptive controller simultane-
ously performs the identification of the unknown plant.
Remark 4: As only local information is available for each

agent, we cannot regard all the unknown parameter matrices of
agents as a single parameter matrix to estimate, and use a

centralized estimator as in [4] to design a controller and analyze
the properties of the closed-loop system. Instead, an estimator
has to be chosen by each agent ( ), which may
be different from each other due to their different initial values

, , and the regression vector . From (7)–(11),
the expression of each agent’s estimator looks the same as in
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[4], but from the discussion below, the analysis on the proper-
ties of the estimators and on the stability and optimality of
the closed-loop systems are essentially different from [4]. The
key difference lies in that the regressive matrix of each agent
contains not only the state of itself but also the states of its
neighbors.
Let

(12)

Then by using the same technique as Lemma 1 in [39], we have
the following results for algorithm (7)–(11).
Lemma 3.2: Under assumptions A1), A2) and A4), if

is -measurable, then the ELS algorithm (7)–(11) has the fol-
lowing properties:

a.s. (13)

where is defined in Remark 2, is the minimum eigen-
value of .
The conclusions of Lemma 3.2 are standard for the ELS algo-

rithm, and can be proved in the same way as Lemma 1 in [39],
only noticing that the -algebra under consideration at each time
for each agent , , is rather than . A com-
plete proof is very lengthy and almost the same as that of Lemma
1 in [39], thus, omitted here, due to the space limit.

B. Adaptive Control Design

In this section, a distributed adaptive tracking control will be
designed by using the CE principle, and the individual-mass
interplay methodology, i.e., the mean field method [24]–[27],
[29], [30] under the stochastic noncooperative game framework.
In the setup of our game problem, the following rationality as-
sumption is needed just as in [24]:
Rationality Assumption: 1) each agent optimizes its own cost

function and 2) each agent assumes all other agents are being
simultaneously rational when evaluating their competitive be-
havior.
We now give the design procedure of the control policy based

on the individual-mass interplay methodology.
Step 1: Estimate of the PSA Term : Denote the PSA

estimate of agent by ( , ).
Consider the distributed optimal tracking control problem of the
systems (1) with cost function

In this case, from Remark 2 and the rationality assumption, the
optimal control of agent should satisfy:

(14)

where and are given by (5) and (6), respectively.
Then the closed-loop system of agent can be rewritten as

(15)

The PSA term at time is given by

Noticing that , and as-
suming all agent can achieve the same estimate of the PSA term,
i.e., , , then we can take as
the estimate of . In other words, when the population
number is large enough, we can take the iterative solution

of

(16)

as the estimate of the PSA term.
Therefore, when the parameter matrix is known, by the NCE

principle, (14) and (16) we can obtain the distributed optimal
tracking control law for the systems (1)–(2). Denote it by ,
which should satisfy:

(17)

In summary, the idea of the individual-mass methodology
used in Step 1 is that if at time , an estimate (i.e., ) of the
mass behavior (i.e., ) were given, the rationality would
require each agent synthesize its individual cost based optimal
control (i.e., ) as a tracking action [see (14)]. Then, at time

, the resulted mass trajectory (i.e., ) would be
used by the agents to iteratively update their estimates of the
mass trajectory (i.e., ), which can be proved to be very
close to as the population number is sufficiently large
[see (16) and the one above (16)].
Step 2: Design of Adaptive Control: When the parameter

matrix is unknown, by the CE principle we should replace
and in (17) with their estimates and given by
ELS algorithm (7)–(11), and then, obtain a distributed adaptive
tracking control law for the systems (1)–(2). Denote it by ,
which should satisfy:

(18)

where , and are given by (7)–(11) and (16).
From (18), when is nonsingular, can be equiva-
lently written as
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To deal with the case where is singular, we adopt the
method of [39] to adjust :

(19)
where , are orthogonal matrices and obtained by the
singular value decomposition [40] of , i.e.,

, is a positive definite diagonal

matrix.
Thus, we obtain a distributed adaptive tracking control law

for the case where the parameter matrix is unknown:

(20)

under which the dynamic equation of the closed-loop system
can be written as

(21)

where .
Remark 5: The mean field method adopted here does not rely

on local interactions or connectivity properties for coordinating
the multi-agent system. Each rational agent agrees to estimate
the PSA term with the same value , which is de-
rived from the same recursive (16), so that all agents then track
the same reference signal . The local information avail-
able to each agent on the connecting agents’ state is not used
for estimating the PSA but only to identify the equation gov-
erning its own dynamics. The possibility for the agents to locally
infer the mean field effect is the key to the success of the NCE
methodology. Here under the rationality assumption on
all agents is important. The local forecast of the mean field evo-
lution in various forms (for example, the equation system [24,
(4.6)–(4.9)]). By this method, one can greatly reduce the com-
plexity in both control computation and implementation since
there is no necessity for each agent to collect the detailed state
information from all other agents. Only macroscopic behavior
matters.

C. Closed-Loop System Analysis

In this subsection, we want to prove the closed-loop
system (21) is uniformly stable w.r.t. ; the estimate of

is strongly consistent; and the adaptive control group
is a.s. asymptotic

equilibrium. To conduct the stability analysis, we need the
following lemma.
Lemma 3.3: For the system (1), assume A1)–A4) hold, and

the nonlinear iterative solution of

is bounded. Then under the distributed adaptive tracking control
(7)–(11), (16), and (20), we have

(22)

(23)

where

(24)
Proof: The proof of this lemma is put into Appendix A.

Remark 6: The proof idea of Lemma 3.3 is similar to The-
orem 5.4 in [4], the key difficulty here stems from the state cou-
pling of the agents, which requires us to analyze properties
of the closed-loop systems of all the agents simultaneously.
It is worth noticing that the , in Lemma 3.3 depends on
the population number .
Theorem 3.1: Under the conditions of Lemma 3.3, the closed-

loop system (21) is a.s. uniformly stable w.r.t. . Specifically,
a.s.

Proof: For each agent ( ), by (21) and (24)
we have

From Lemma 3.1, Lemma 3.3 and A1), for any ,

(25)

Thus, by (23), (25), and A1) we have

a.s.

This together with the boundness of results in

a.s.
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where . Noticing
that are all independent of , we obtain the desired
result.
Remark 7: Theorem 3.1 implies that, under the adaptive con-

trol (7)–(11), (16), and (20), the increase of the population does
not affect the stability of the closed-loop system. This property
is the prerequisite for discussing the a.s. asymptotic Nash equi-
librium property of the adaptive control group.
Before analyzing and evaluating the performance of the dis-

tributed adaptive control (20), we first come to study the esti-
mation error of to the PSA term.
Theorem 3.2: For the system (1), assume A1)–A4) hold.

Then under the adaptive control (7)–(11), (16), and (20), the
closed-loop system has the following property:

a.s. (26)

Proof: By (21) we have

(27)

By (23) we have

(28)

and by Theorem 4.1 of [27] we have

a.s.

This together with (27) and (28) implies

From this, Theorem 3.2 can be easily obtained.
Remark 8: From Theorem 3.2 we can show that the esti-

mation of to PSA term is consistent, as , i.e.,
a.s. This

tells us that can be regarded as the estimate of the PSA
when the agent number is large, which is key to ensuring good
properties of the adaptive control designed.
We now consider the a.s. asymptotic Nash equilibrium of

the distributed adaptive tracking control group
given by (7)–(11), (16), and

(20) w.r.t. the corresponding performance index group
.

Theorem 3.3: For the system (1), ( ) is de-
fined by (2). Assume A1)–A4) hold, and is -Hölder con-
tinuous, i.e., , , where

. Then under the distributed adaptive tracking con-
troller (7)–(11), (16), and (20), the corresponding performance
indices satisfy

a.s.

Proof: By (2), (21), (24), and A1) we have

(29)

where

From (23), (26), the -Hölder continuity assumption of ,
and Jensen inequality [41], it follows that

(30)

From this and Lemma 3.1, for any we have

a.s.

Thus, a.s. This together with (29) and (30) leads to
Theorem 3.3.
Corollary 3.1: Under the condition of Theorem 3.3, the dis-

tributed adaptive control group
given by (7)–(11), (16), and (20) is a.s. asymptotic

Nash equilibrium w.r.t. the corresponding performance index
group . In addition, the
convergence rate of each agent’s performance index to the op-
timal value is .

Proof: Note that under the condition of Theorem 3.3,
satisfies A1); the

reference signal and ( ,

) are all -measurable; and is
uncorrelated with . Then, for any control group
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, by Theorem 3.6 in [4] we
obtain

a.s. (31)

Particularly, we have that for any ,
a.s., or equivalently,

a.s., . This together with Theorem 3.3 leads to

a.s.

Thus, by the Definition 2.1, the corollary is true.
Remark 9: Similar to [27], the idea in this paper can be easily

generalized to prove that the distributed adaptive control group
is asymptotic Nash

equilibrium in probability w.r.t. the corresponding performance
index group , under some
mild conditions on the nonlinear function .
Remark 10: It is worth noticing that the information flow

of each agent is embodied in the following two kinds of in-
teractions. One is the individual-mass interaction, reflected by
the index-coupled PSA term, and overcome by the individual-
mass interplay methodology adequate for rational agents. The
individual-mass interactions are comprehended from the game-
theoretic viewpoint, and actually does not need communica-
tions with other agents [24]–[27], [29], [30]. The other informa-
tion flow is the local communications with the neighbor agents,
based on which parameter estimators are designed to cope with
the weak couplings in each agent’s dynamics. By using the es-
timates of the weak couplings and the certainty equivalence
principle, the adaptive distributed controls are designed. We
can see that it is the individual-mass interactions that play a
key role in achieving the global behavior, i.e., the overall op-
timal tracking action, rather than the local communications with
neighborhood.

IV. ROBUST ADAPTIVE TRACKING CONTROL
AND PERFORMANCE ANALYSIS

Due to the complexity ofMASs, there always exists deviation
between the mathematical model and the real dynamics of each
agent, for instance, unmodeled dynamics, etc. At the same time,
along with the evolution of itself and the environment, system
parameters of each agent are always changing with time. Thus,
it is more realistic to consider the following system model:

(32)

where , , denote the state,
control input and external disturbances of agent at time ,
, respectively, , , for ;

denotes the interaction term
of agent with its neighbors; denotes the unmodeled
dynamics; , ,

are unknown time-varying
deterministic parameter matrices with proper dimensions.
Here, different from (1), the model (32) not only contains un-

modeled dynamics, but also permits time-varying parameters.
Obviously, when , , the interaction
between and disappears, which leads the network topology
of the MAS to be time-varying.
Based on the model (32), we investigate the robust tracking-

type games via coupled performance indices, which are given
by

(33)

where definitions of , , are the same as (2).
Remark 11: Compared with (1), the model (32) can de-

scribe more general systems, which may include unknown
time-varying parameters, unknown coupled interaction term,
external disturbances and unmodeled dynamics, etc. Similar
to , the performance index includes the unknown
PSA term as well, but is deterministic. It is easier to conduct
analysis than the stochastic case. From the discussions below,
due to the difference of the parameter estimators, assumptions
and the properties of the closed-loop systems, it is hard for us
to treat Section III as a special case of this section.
In order to quantitatively analyze the minimization of the

above performance indices , we intro-
duce the definition of -Nash equilibrium.
Definition 4.1 [24]: For the system (32), (33) and control

group , if there exists ,
such that ,

, then we call the control group is -Nash equi-
librium w.r.t. the index group . Par-
ticularly, if , then the control group is called Nash
equilibrium w.r.t. the performance index group .
In this section, we will design a distributed optimal adap-

tive tracking policy for the systems (32) and (33), in order to
handle the existing uncertainties, i.e., unmodeled dynamics, un-
known time-varying parameters, unknown coupled interaction
term, and external disturbances. Specifically, the adaptive esti-
mation algorithm is given in Section IV-A, the adaptive control
is constructively designed in Section IV-B, and the properties of
the closed-loop system are analyzed in Section IV-C.

A. Estimation Algorithm

To simplify the expression, we rewrite the system (32) in the
following form:

(34)

where

(35)

(36)

To proceed the robust analysis of the systems (32)–(33), we
need the the following assumptions.
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B1): There exist , and such that
, , and

where

...
. . .

...
...

B2): There exist nonnegative constants , ( ),
such that

B3): There is a known convex compact set such that
for all , and is nonsingular for all .

Here and are with the form of (35).
B4): is a group of deter-

ministic or stochastic disturbance sequence on the proba-
bility space , satisfying , and
there exists , such that for any ,

,
where , , are positive constants.
B5): There exists a nonnegative sequence such

that , , , where
satisfies , ,

. The sequence is bounded and satisfies
,

, where , are constants.
B6): is an independent random variable se-

quence with a commonmathematical expectation .
Remark 12: The above assumptions are the same as single-

agent case [42] except for B3) and B6). B1) is the general-
ization of the standard minimum phase condition in the con-
stant parameter case. B2) describes the variation rate of the un-
known parameter matrices in the time average
sense. In particular, when is small, it means that the system is
slowly time-varying in the time average sense. The disturbance
sequence in B4) contains all uniformly
bounded noise sequence in sample path, and some classes of a.s.
unbounded noise sequence [42]. B5) is a constraint on the diver-
gence speed of the unmodeled dynamics, which includes both
unmodeled part of each agent’s dynamics and unmodeled part
of interactions with its neighbors. B6) is a condition on initial
states.
As it is well-known, the ELS algorithm is more adequate for

the constant parameter case, but now we are facing the time-
varying case. Thus, different from Section III, we will apply a
projected LMS algorithm [42] to estimate the unknown time-
varying parameter matrix ( ):

(37)

where 1 is the estimate for ; and are given
by (36) and B5), respectively; is the convex compact set
given in Assumption B3). denotes the nearest point in
to , i.e., ; ;

is a sufficiently large constant, specific constraint on
which will be discussed below in Lemma 4.2.
Remark 13: Since is a convex compact set, there exists

, such that for all . In addition,
for any given , is existent and
unique; and for all , . This is
key to analyzing the properties of the projected LMS algorithm
(37).
For the projected LMS algorithm (37), we have the following

estimates.
Lemma 4.1: Consider the system (34) and the estimation al-

gorithm (37), if Assumptions B3) and B5) hold, then the esti-
mation error has the following property:

where is the constant mentioned in Remark 13, and
, .

Proof: The key ideas and techniques for proving this
lemma are the same as Lemma 5.1 in [42]. Here, due to high
dimension, the proof is slightly different. See Lemma 6.3 of
[43, p. 126].

B. Distributed Robust Adaptive Control Design

In this subsection, we will constructively design a distributed
robust adaptive tracking control by using the NCE principle
[24], [27] and CE principle.
Step 1: Estimate of the Unknown PSA Term : Assume

the estimate of at time ( ) is . By the
rationality assumption, the distributed robust tracking control

( ) of the systems (32) and
should satisfy

(38)

where and are defined by (35) and (36), respectively.
The closed-loop system of agent ( ) can be

rewritten as , .
The PSA term at time is given by

, .
From B6), when the population number is sufficiently

large, the external disturbance and unmodeled dynamics are
sufficiently small, this suggests us to take the iterative solution

of (16) as the estimate of the PSA term. Thus,
when the parameter matrices are known,
by NCE principle we can obtain a distributed tracking control
for the system (32) and (33) based on (16) and (38). Denote it
by , which should satisfy

(39)

Step 2: Design of Robust Adaptive Control: When the time-
varying parameter matrix is unknown, by the CE principle

1To be consistent, symbols in this section will have the samemeaning as those
in Section III. For example, denotes the parameter estimation error;
denotes the adaptive tracking control.
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we replace the parameters in (39) with its estimate given
by the projected LMS algorithm (37), and obtain a distributed
robust tracking control. Denote it by , which should satisfy

, , where and are
given by (36) and (16), respectively. From the above equation
and definition of ( ) in (37), the control
can be explicitly written as

(40)

The closed-loop system of agent ( ) under con-
trol (40) can be written as

(41)

C. Closed-Loop System Analysis

In this subsection, we will prove the closed-loop system (41)
is stable and robust w.r.t. the system uncertainties; the consis-
tency of the PSA estimate is robust w.r.t. the system uncertain-
ties; and the control group is
-Nash equilibrium. To do so, we need the following results.
Lemma 4.2: For the system (32), (33), (37), (40), and (16),

assume B1)–B5) hold, and the nonlinear iterative solution of
with is bounded by a constant

(i.e., ). If and are sufficiently small, and
is sufficiently large, such that

and , then we have

(42)

where , is defined by

(43)
and satisfies the following recursive inequality:

(44)

Here ,

(45)

Proof: The proof of this lemma is put into Appendix B.
Remark 14: Compared with the single-agent case, the key

difficulty here stems from dealing with the state coupling of the
agents, which requires us to analyze the closed-loop prop-

erties of all the agents simultaneously. It is worth noticing
that the in Lemma 4.2 depends on the population number
; and the choice of needs the population number and ,

which, in some sense, is a kind of global information. Of course,
when is not exactly known, we can use an upper of to re-
place in the above equation.
Remark 15: From B2), the requirement of to be sufficiently

small implies that the system (32) is slowly time-varying in the
time average sense. From B5), the requirement of to be suffi-
ciently small implies that the unmodeled dynamics is small
w.r.t. .
Theorem 4.1: Under the conditions of Lemma 4.2, the closed-

loop system (41) has the following property:

(46)

Proof: For agent ( ), by (41) we have

From B5) and Lemma 4.2 we have

(47)

This together with Lemma 4.1 and Jensen inequality [41]
implies
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(48)

From (47) and B5) we have

(49)
From Lyapunov inequality [41] and B4) we have

(50)

which together with (48), (49) and the boundness of sequence
gives

(51)

where . This implies
(46).
Remark 16: From Theorem 4.1, it is hard to get the robust

property of the uniform stability w.r.t. as in Theorem 3.1.
The key difficulty lies in the close relation of the estimate in (51)
with the population number . But the asymptotic robust sta-
bility can be obtained by this theorem, which means no matter
how large it is, the stability of the close-loop system (41) is ro-
bust w.r.t. external disturbances, slowly time-varying parame-
ters and unmodeled dynamics.
Now we turn to study the consistency of the PSA estimate.
Theorem 4.2: For the system (32), assume B1)–B6) hold, and

the nonlinear iterative solution of with
is bounded. If is sufficiently large, such that

and , then under the
distributed adaptive control (40), (37) and (16), the closed-loop
system (41) has the following property:

where , and is
defined in (45).

Proof: By (41) we have

From (48) one can get

This together with (49) and (50) leads to
.

Thus, the theorem holds for all given .
Remark 17: From the laws of large numbers, when the pop-

ulation number is sufficiently large, the estimation error of
by should be small. This may lead to a better esti-

mate of by when is large.
We now analyze the robust Nash equilibrium of the designed

adaptive control.
Definition 4.2: For the system (32) and a control group

, we say the control group is robust
Nash equilibrium w.r.t. the index group
, if is Nash equilibrium w.r.t. , as the uncertainties

, , .
Theorem 4.3: For the system (32), (33), assume B1)–B6)

hold, and the nonlinear iterative solution of
with is bounded. The nonlinear function is
-Hölder continuous, i.e., ,
, where . If and are sufficiently small, and
is sufficiently large, such that and

, then under the distributed adaptive control (40),
(37), and (16), we have

(52)

where , , ( ) have the same meanings as
in Lemma 4.2.

Proof: By (33) and (41) we have

From the conditions of this theorem, Theorem 4.2 and Jensen
inequality [41], we have

(53)

By (48), (49), and (50) we have . This
together with (53) implies (52).
Remark 18: Under the global-measurement based control

law for agent , and for other
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agents, we can similarly prove that the global optimal perfor-
mance index value is 0, when the uncertainties , and tend
to zero. From Theorem 4.3, we have , as

, , . Thus, by Definition 4.2, the dis-
tributed control group is robust Nash equilibrium w.r.t. the
corresponding performance index group . When , , are
non-zero, by Definition 4.1, the designed adaptive control group

is -Nash equilibrium w.r.t. .
Remark 19: It is worth to considering the robustness issue

when the initializations for the PSA estimate of all agents are
different. The key difficulty to prove the PSA estimates of dif-
ferent agents to be consistent w.r.t. is that some conditions on

are needed to ensure the establishment of the estimates for
the macroscopic dynamic behavior in (44), and to make the
initial PSA error for each agent not amplified in time average
sense when it is iterated through the function .

V. NUMERICAL EXAMPLES

In this section, we will give two numerical examples to illus-
trate the results of Sections III and IV.
Example 1: Consider the production output adjustment for

a dynamical market with firms supplying the same product
[24], [38]. Different from [24], the production dynamics of each
firm is modeled by a discrete time dynamic system, which is
influenced by its neighbor firms. Here, neighbors of the firm
can be interpreted as those joint firms distributed in different
regions that have cooperation or coordination relationships with
. The production dynamics of the firm ( ) is
modeled by

where and denote the production output and adjust-
ment control of the firm , respectively;
denotes the joint firms of the firm , is the number of
its joint firms; denotes the
coordination relationship of the firm with its joint firms;

are independent and identically dis-
tributed (i.i.d.) r.v.s with uniform distribution on ;

is a sequence of Gaussian white noise with
distribution N .
The following performance index [24] is expected to be op-

timized by the firm ( ):

where , is the production price, , .
The unknown parameter vector is

. The coupling function in
indexes (2) is . Obviously, is -Hölder
continuous with , .
Let , , , , ,
, , , , ,
. Then, the above system satisfies the assumptions A1)–A4).

Apply the parameter estimator (7)–(11) to estimate the unknown
parameter vector. Initial values are taken as ,
, . The estimate of the high-frequency gain
is given by (19). The adaptive tracking control is designed as

Fig. 1. Output trajectories of the firms, when .

Fig. 2. Curve of with respect to .

(20), where is given by (16). When the number of firms
, the trajectories of the closed-loop system are shown

in Fig. 1.
Let the number of firms increase from 1 to 100, and de-

note the difference between the maximum of the performance
indices and by , the curve of w.r.t. is shown in
Fig. 2, from which one can find that, when increases, the per-
formance index of each firm tends to . This is consistent with
the conclusion of Theorem 3.3.
Example 2: Consider the following time-varying stochastic

MAS described by

where initial states are i.i.d. r.v.s with normal distribution
N . Take the time-varying parameters as follows: when

is even, , ,
, ; when is odd,
, , , ,

, , otherwise.
is a sequence of Gaussian white noise, with

distribution N . satisfies B5), ,
. Thus, the above parameters meet conditions B1)–B6).

is taken as 6, is taken as 1. The nonlinear coupling function
in indexes (33) is .
Apply estimation algorithm (37) to estimate the time-varying

parameters, and the adaptive control is given by (40) and (16).
Let , , , . Then,
the trajectories of the closed-loop system are shown in Fig. 3;
the estimate of for the PSA term is shown in Fig. 4. We
can see that, when , , are small, the designed adaptive
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Fig. 3. State trajectories of the agents, when .

Fig. 4. Curves of and , when .

control works well in driving the agents to track the unknown
coupling function . This is consistent with the result
of Section IV.
It is obvious that agent is not connected to the other agents,

thus, the connectivity of the network topology does not hold.
However, from the simulation it can be seen that the global
tracking behavior can still be established. This demonstrates the
effectiveness of the individual-mass game methodology even
under topologies of low connection characteristics.

VI. CONCLUSION REMARKS

Distributed adaptive tracking-type games for coupled sto-
chastic linear MASs with various uncertainties is investigated.
We first considered the time-invariant case subject to the
uncertainties such as unknown structure parameters, external
disturbances and unknown interactions among agents, and
then, the case subject to unmodeled dynamics and unknown
time-varying parameters, in addition to the external distur-
bances and unknown interactions among agents. For both of
these two cases, we use ELS/LMS to estimate the unknown
parameters, the NCE principle to estimate the unknown PSA
term, and the CE principle to design adaptive control. Under
some mild conditions, we proved that in the case without
unmodeled dynamics, the closed-loop system is almost surely
uniformly stable w.r.t. the population number and the per-
formance indices converge to their optimal values; in the case
with unmodeled dynamics, the closed-loop system is stable,
and the adaptive control are robust Nash equilibrium w.r.t. the
unmodeled dynamics, the parameter variation and the external
disturbances.
For the adaptive control of MASs, many important issues are

still open and worth investigating, such as the adaptive LQG

games and adaptive controls in the case where communication
channel is with noise, package loss, quantization error, etc.

APPENDIX A
PROOF OF LEMMA 3.3

The proof idea of Lemma 3.3 comes from [4]. Before pro-
ceeding, we need the following two lemmas.

Lemma A.1 [43]: Under the assumption A1), for each
agent ( ), we have a.s. and

a.s., where is defined
by (12).

Lemma A.2 [43]: Under the notations and assumptions of
Lemma 3.3, there is a positive stochastic sequence such
that

(A1)

(A2)

where , , and

and

Proof of Lemma 3.3: By Lemma A.2,we have

(A3)

From the third equation of (13), for any , there
exists a constant which is dependent on , such
that a.s. . Since

,
we have , and there exists sufficiently
large , which may depend on , such that

. This im-
plies that, for any

a.s. (A4)

In addition, by , , we have

a.s. (A5)
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Since , there exists a constant such that

(A6)

Thus, by (A4), (A5), (A6), and the definition of we have

a.s.

Substituting this into (A3) and from the arbitrariness of , we
obtain

(A7)

By Lemma A.1, . Hence,
, . This together with (A7)

and the arbitrariness of leads to ,
. Therefore, by the third equation of (13) we have

(A8)

which together with A1), (13), and (21) implies

(A9)

and hence

(A10)

Here the and are dependent on . By (A9) and (A10)
we have .
Thus, (22) is true. This together with (A8) and (A10) gives (23).

APPENDIX B
PROOF OF LEMMA 4.2

In order to prove Lemma 4.2, we need the following lemma.
Lemma B.1: Assume B1), B3), and B5) hold, the nonlinear

iterative sequence is bounded by (i.e., ,

). If , then under the
adaptive control (40), (37), and (16), the sequence defined
in (43) satisfies (44), and we have the following estimation:

(B1)
Here, and are defined in B1) and B5), respectively;
and are defined in (45).

Proof: The proof can be found in Lemma B.1 of [43].
Proof of Lemma 4.2: We first analyze the linear

time-varying (44), and estimate .
From Lemma 4.1 we have

(B2)

where is a constant dependent on .
We now analyze the term

By using the Hölder inequality

we have

(B3)

Notice that implies that
. Then, by Hölder in-

equality and the conditions and B4)
we arrive at
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This together with (B3) gives

(B4)

Therefore, by (B2) we have

(B5)

where

.
Noticing that , , we have

which together with (B5) gives

(B6)

By B4) and the elementary inequality ,

, , we have

. This together with
(B6) and Lemma B.1 renders

Here, the is related to . From the above equation, if
, we have . Noticing (B1), we

finally obtain (42).
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